HYBRID PARTICLE SWARM OPTIMIZATION, GRID SEARCH METHOD AND UNIVARIATE METHOD TO OPTIMALLY DESIGN STEEL FRAME STRUCTURES
Authors
Abstract:
This paper combines particle swarm optimization, grid search method and univariate method as a general optimization approach for any type of problems emphasizing on optimum design of steel frame structures. The new algorithm is denoted as the GSU-PSO. This method attempts to decrease the search space and only searches the space near the optimum point. To achieve this aim, the whole search space is divided into a series of grids by applying the grid search method. By using a method derived from the univariate method, the variables of the best particle change values. Finally, by considering an interval adjustment to the variables and generating particles randomly in new intervals, the particle swarm optimization allows us to swiftly find the optimum solution. This method causes converge to the optimum solution more rapidly and with less number of analyses involved. The proposed GSU-PSO algorithm is tested on several steel frames from the literature. The algorithm is implemented by interfacing MATLAB mathematical software and SAP2000 structural analysis code. The results indicated that this method has a higher convergence speed towards the optimal solution compared to the conventional and some well-known meta-heuristic algorithms. In comparison to the PSO algorithm, the proposed method required around 45% of the total number of analyses recorded and improved marginally the accuracy of solutions.
similar resources
A novel hybrid charge system search and particle swarm optimization method for multi-objective optimization
In this paper a newhybridmethod is proposed formulti-objective optimization problem. Inmulti-objective particle swarm optimization methods, selecting the global best particle for each particle of the population from a set of Pareto-optimal solutions has a great impact on the convergence and diversity of solutions. Here, this problem is solved by incorporating charged system search method into t...
full textOPTIMAL DESIGN OF ARCH DAMS BY COMBINING PARTICLE SWARM OPTIMIZATION AND GROUP METHOD OF DATA HANDLING
Optimization techniques can be efficiently utilized to achieve an optimal shape for arch dams. This optimal design can consider the conditions of the economy and safety simultaneously. The main aim is to present an applicable and practical model and suggest an algorithm for optimization of concrete arch dams to enhance their seismic performance. To achieve this purpose, a preliminary optimizati...
full textRELIABILITY-BASED DESIGN OPTIMIZATION OF COMPLEX FUNCTIONS USING SELF-ADAPTIVE PARTICLE SWARM OPTIMIZATION METHOD
A Reliability-Based Design Optimization (RBDO) framework is presented that accounts for stochastic variations in structural parameters and operating conditions. The reliability index calculation is itself an iterative process, potentially employing an optimization technique to find the shortest distance from the origin to the limit-state boundary in a standard normal space. Monte Carlo simulati...
full textHybrid Charged System Search - Particle Swarm Optimization for Design of Single-layer Barrel Vault Structures
The barrel vaults are composed of member elements arranged on a cylindrical surface. This kind of structure is utilized to cover the long spans. In this paper, the hybrid charge system search and particle swarm optimization algorithm is improved and utilized to optimal design of single-layer barrel vault frames. Some modifications on parameter values are performed to enhance the performance of ...
full textportfolio optimization using particle swarm optimization method
the markowitz’s optimization problem is considered as a standard quadratic programming problem that has exact mathematical solutions. considering real world limits and conditions, the portfolio optimization problem is a mixed quadratic and integer programming problem for which efficient algorithms do not exist. therefore, the use of meta-heuristic methods such as neural networks and evolutionar...
full textModeling and Hybrid Pareto Optimization of Cyclone Separators Using Group Method of Data Handling (GMDH) and Particle Swarm Optimization (PSO)
In present study, a three-step multi-objective optimization algorithm of cyclone separators is catered for the design objectives. First, the pressure drop (Dp) and collection efficiency (h) in a set of cyclone separators are numerically evaluated. Secondly, two meta models based on the evolved Group Method of Data Handling (GMDH) type neural networks are regarded to model the Dp and h as the re...
full textMy Resources
Journal title
volume 7 issue 2
pages 173- 191
publication date 2017-03
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023